常用分布的期望、方差和特征函数

📅Date: 2025-03-09 📚Category: 数学 📂Tag: 数理统计 📑Word: 1.5k

概率分布表(期望与方差)

分 布 分布列 \(p_k\) 或分布密度 \(p(x)\) 期 望 方 差
0-1 分布 \(p_k=p^k(1-p)^{1-k}, \quad k=0,1\) \(p\) \(p(1-p)\)
二项分布
\(b(n, p)\)
\(P_k=\displaystyle\binom{n}{k} p^k(1-p)^{n-k}, \quad k=0,1, \cdots, n\) \(n p\) \(n p(1-p)\)
泊松分布
\(P(\lambda)\)
\(p_k=\dfrac{\lambda^k}{k!} \mathrm{e}^{-\lambda}, \quad k=0,1, \cdots\) \(\lambda\) \(\lambda\)
超几何分布
\(h(n, N, M)\)
\(p_k=\dfrac{\displaystyle\binom{M}{k}\displaystyle\binom{N-M}{n-k}}{\displaystyle\binom{N}{n}}, \quad \begin{aligned} k=0,1, \cdots, r, \\ r=\min \{M, n\} \end{aligned}\) \(n \dfrac{M}{N}\) \(\dfrac{n M(N-M)(N-n)}{N^2(N-1)}\)
几何分布
\(Ge(p)\)
\(p_k=(1-p)^{k-1} p, \quad k=1,2, \cdots\) \(\dfrac{1}{p}\) \(\dfrac{1-p}{p^2}\)
负二项分布
\(Nb(r, p)\)
\(p_k=\displaystyle\binom{k-1}{r-1}(1-p)^{k-1} p^{r}, \quad k=r, r+1, \cdots\) \(\dfrac{r}{p}\) \(\dfrac{r(1-p)}{p^2}\)
正态分布
\(N(\mu, \sigma^2)\)
\(p(x)=\dfrac{1}{\sqrt{2\pi}\sigma}\exp\left\{-\dfrac{(x-\mu)^2}{2\sigma^2}\right\}\) \(\mu\) \(\sigma^2\)
均匀分布
\(U(a, b)\)
\(p(x)=\dfrac{1}{b-a}, \quad a<x<b\) \(\dfrac{a+b}{2}\) \(\dfrac{(b-a)^2}{12}\)
指数分布
\(\operatorname{Exp}(\lambda)\)
\(p(x)=\lambda \mathrm{e}^{-\lambda x}, \quad x \geqslant 0\) \(\dfrac{1}{\lambda}\) \(\dfrac{1}{\lambda^2}\)
伽马分布
\(Ga(\alpha, \lambda)\)
\(p(x)=\dfrac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-\lambda x}, \quad x \geqslant 0\) \(\dfrac{\alpha}{\lambda}\) \(\dfrac{\alpha}{\lambda^2}\)
\(\chi^2(n)\) 分布 \(p(x)=\dfrac{x^{n / 2-1} \mathrm{e}^{-x / 2}}{\Gamma(n / 2) 2^{n / 2}}, \quad x \geqslant 0\) \(n\) \(2n\)
贝塔分布
\(Be(a, b)\)
\(p(x)=\dfrac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1}, \quad 0<x<1\) \(\dfrac{a}{a+b}\) \(\dfrac{ab}{(a+b)^2(a+b+1)}\)
对数正态分布
\(LN(\mu, \sigma^2)\)
\(p(x)=\dfrac{1}{\sqrt{2 \pi} \sigma x} \exp \left\{-\dfrac{(\ln x-\mu)^2}{2 \sigma^2}\right\}, x>0\) \(\mathrm{e}^{\mu+\sigma^2/2}\) \(\mathrm{e}^{2\mu+\sigma^2}\left(\mathrm{e}^{\sigma^2}-1\right)\)
柯西分布
\(\operatorname{Cau}(\mu, \lambda)\)
\(p(x)=\dfrac{1}{\pi} \dfrac{\lambda}{\lambda^2+(x-\mu)^2}, -\infty<x<\infty\) 不存在 不存在
韦布尔分布 \(\begin{aligned} p(x)&=F'(x), \\ F(x)&=1-\exp\left\{-\left(\dfrac{x}{\eta}\right)^m\right\}, x>0 \end{aligned}\) \(\eta \Gamma\left(1+\dfrac{1}{m}\right)\) \(\eta^2\left[\Gamma\left(1+\dfrac{2}{m}\right)-\Gamma^2\left(1+\dfrac{1}{m}\right)\right]\)

概率分布表(特征函数)

分 布 分布列 \(p_k\) 或分布密度 \(p(x)\) 特征函数 \(\varphi(t)\)
单点分布 \(P(X=a)=1\) \(\mathrm{e}^{\text{i} ta}\)
0-1 分布 \(p_k=p^k q^{1-k}, q=1-p, k=0,1\) \(p \mathrm{e}^{\text{i} t}+q\)
二项分布
\(b(n, p)\)
\(p_k=\displaystyle\binom{n}{k} p^k q^{n-k}, \quad k=0,1, \cdots, n\) \(\left(p \mathrm{e}^{\text{i} t}+q\right)^n\)
泊松分布
\(P(\lambda)\)
\(p_k=\dfrac{\lambda^k}{k!} \mathrm{e}^{-\lambda}, \quad k=0,1, \cdots\) \(\mathrm{e}^{\lambda\left(\mathrm{e}^{\text{i} t}-1\right)}\)
几何分布
\(Ge(p)\)
\(p_k=p q^{k-1}, k=1,2, \cdots\) \(p /\left(1-q \mathrm{e}^{\text{i} t}\right)\)
负二项分布
\(Nb(r, p)\)
\(p_k=\displaystyle\binom{k-1}{r-1} p^{r} q^{k-r}, \quad k=r, r+1, \cdots\) \(\left(\dfrac{p}{1-q \mathrm{e}^{\text{i} t}}\right)^{r}\)
均匀分布
\(U(a, b)\)
\(p(x)=\dfrac{1}{b-a}, \quad a<x<b\) \(\dfrac{\mathrm{e}^{\text{i}bt}-\mathrm{e}^{\text{i}at}}{\text{i}t(b-a)}\)
正态分布
\(N(\mu, \sigma^2)\)
\(p(x)=\dfrac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\dfrac{(x-\mu)^2}{2 \sigma^2}\right\}\) \(\exp \left(\text{i} \mu t-\dfrac{\sigma^2 t^2}{2}\right)\)
指数分布
\(\operatorname{Exp}(\lambda)\)
\(p(x)=\lambda \mathrm{e}^{-\lambda x}, \quad x \geqslant 0\) \(\left(1-\dfrac{\text{i}t}{\lambda}\right)^{-1}\)
伽马分布
\(Ga(\alpha, \lambda)\)
\(p(x)=\dfrac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-\lambda x}, \quad x \geqslant 0\) \(\left(1-\dfrac{\text{i} t}{\lambda}\right)^{-\alpha}\)
\(\chi^2(n)\) 分布 \(p(x)=\dfrac{x^{n/2-1} \mathrm{e}^{-x/2}}{\Gamma(n/2) 2^{n/2}}, \quad x \geqslant 0\) \((1-2 \text{i} t)^{-n/2}\)
贝塔分布
\(Be(a, b)\)
\(p(x)=\dfrac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a-1}(1-x)^{b-1}, \quad 0<x<1\) \(\dfrac{\Gamma(a+b)}{\Gamma(a)} \sum\limits_{k=0}^{\infty} \dfrac{(\text{i}t)^k \Gamma(a+k)}{k!\Gamma(a+b+k) \Gamma(k+1)}\)
柯西分布
\(\operatorname{Cau}(0,1)\)
\(p(x)=\dfrac{1}{\pi(1+x^2)}, \quad -\infty<x<\infty\) \(\mathrm{e}^{-\|t\|}\)

评论